

Feb 19-8:47 AM

Existen
$$f(x) = x^4 - 3x^3 + 3x^2 - x$$

1) Polynomial \rightarrow Domain $(-\infty, \infty)$

2) Y-Int $(0,0)$ $x^4 - 3x^3 + 3x^2 - x = 0$
 $x(x^3 - 3x^2 + 3x - 1) = 0$
3) $x - 1$ nt $(0,0)$ $y = 0$ $y = 0$ $y = 0$

4) No Asymptotes
$$(x - 1)(x^2 - 2x + 1) = 0$$

$$(x - 1)(x - 1)^2 = 0$$

$$(x - 1)(x - 1)(x - 1)^2 = 0$$

$$(x - 1)(x - 1)(x - 1) = 0$$

$$(x - 1)(x - 1)(4x - 1) = 0$$

$$(x - 1)(x - 1)(4x - 1) = 0$$

$$(x - 1)(x - 1)(4x - 1) = 0$$

$$(x - 1)(x - 1)(4x - 1) = 0$$

$$(x - 1)(x - 1)(4x - 1) = 0$$

$$(x - 1)(x - 1)(4x - 1) = 0$$

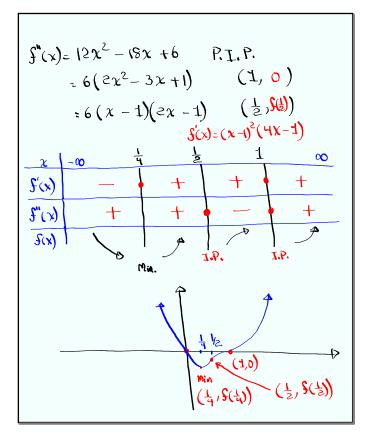
$$(x - 1)(x - 1)(4x - 1) = 0$$

$$(x - 1)(x - 1)(4x - 1) = 0$$

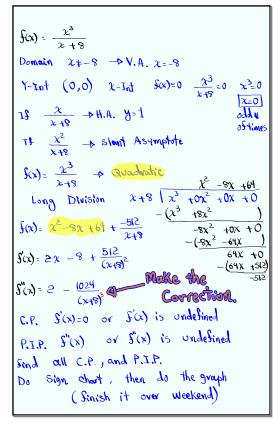
$$(x - 1)(x - 1)(4x - 1) = 0$$

$$(x - 1)(x - 1)(4x - 1) = 0$$

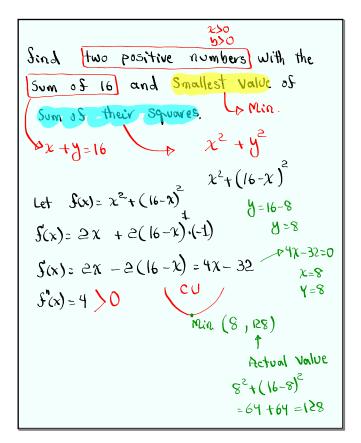
$$(x - 1)(x - 1)(4x - 1) = 0$$

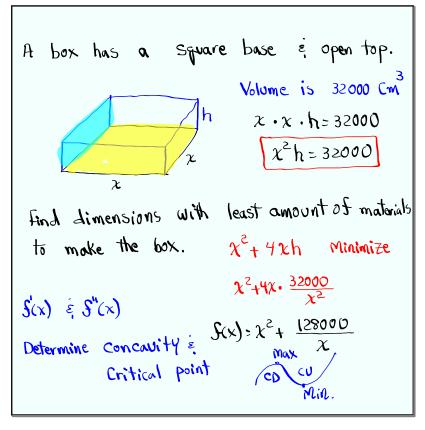

$$(x - 1)(x - 1)(4x - 1) = 0$$

$$(x - 1)(x - 1)(4x - 1) = 0$$


$$(x - 1)(x - 1)(4x - 1) = 0$$

$$(x - 1)(x - 1)(4x - 1) = 0$$


Oct 31-7:28 AM


Oct 31-7:37 AM

Oct 31-7:49 AM

Oct 31-8:03 AM

Oct 31-8:10 AM

Did you look up Rolle's Theorem?

If
$$f(x)$$
 is cont. on $[a,b]$ and $dist.$ on (a,b) , and $f(a) = f(b)$, then at least there is a number C in (a,b) such that $f'(c) = O$.

$$f(x) = \sin x \qquad [o,2\pi] \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x \qquad f(x) = \cos x$$

$$f(x) = \cos x$$

$$f(x) = \cos x$$

$$f(x) = \cos x$$

Oct 31-8:18 AM

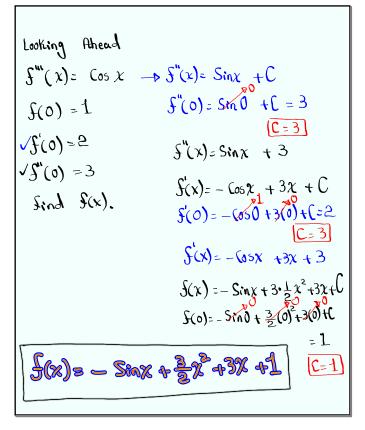
$$f(x) = 3x^2 - 12x + 5$$
 on $[1,3]$
 $f(x)$ is polynomial \rightarrow cont. \in diff everywhere
 $f(1) = 3(1)^2 - 12(1) + 5 = -4$
 $\rightarrow f(1) = f(3)$
 $f(3) = 3(3)^2 - 12(3) + 5 = -4$
 $\text{Rolle's Thrm } \rightarrow f'(c) = 0$ on $(1,3)$
 $f(x) = 6x - 12$ $6C - 12 = 0$ $C = 2$

$$f(x) = \sqrt{x} - \frac{1}{3}x \qquad [0,9]$$

$$f(x) = \sqrt{x} - \frac{1}{3}x \qquad [0,9]? \text{ Yes}$$

$$f(x) = \frac{1}{2\sqrt{x}} - \frac{1}{3} \qquad \text{on } (0,9)? \quad f(x) \text{ is diff. on } (0,9)$$

$$f(c) = 0 \qquad \frac{1}{2\sqrt{c}} - \frac{1}{3} = 0 \qquad \text{P2JC} = 3$$


$$\frac{1}{2\sqrt{c}} = \frac{1}{3} \qquad \text{C} = \frac{9}{4}$$

$$\text{Look UP}$$

$$\text{Mean - Value theorem} \qquad (0,9)$$

$$\text{Sor differentiation}$$

Oct 31-8:27 AM

Oct 31-8:32 AM